翻訳と辞書
Words near each other
・ Hitchin railway station
・ Hitchin Rugby Club
・ Hitchin Rural District
・ Hitchin system
・ Hitchin Town Cricket Club Ground
・ Hitchin Town F.C.
・ Hitchin Yeshiva
・ Hitchin' a Ride
・ Hitchin' a Ride (Green Day song)
・ Hitchin' a Ride (Vanity Fare song)
・ Hitchin' Posts
・ Hitching
・ Hitching post
・ Hitching tie
・ Hitchings
Hitchin–Thorpe inequality
・ Hitchita, Oklahoma
・ Hitchiti
・ Hitchment
・ Hitchwiki
・ Hitchy-Koo
・ HitClips
・ HITD-TV
・ Hitda Codex
・ HitDynamics
・ Hite
・ Hite (surname)
・ Hite Brewery
・ Hite Crossing Bridge
・ Hite House


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hitchin–Thorpe inequality : ウィキペディア英語版
Hitchin–Thorpe inequality
In differential geometry the Hitchin–Thorpe inequality is a relation which restricts the topology of 4-manifolds that carry an Einstein metric.
== Statement of the Hitchin–Thorpe inequality ==
Let ''M'' be a compact, oriented, smooth four-dimensional manifold. If there exists a Riemannian metric on ''M'' which is an Einstein metric, then following inequality holds
: \chi(M) \geq \frac|\tau(M)|,
where \chi(M) is the Euler characteristic of M and \tau(M) is the signature of M. This inequality was first stated by John Thorpe〔J. Thorpe, ''Some remarks on the Gauss-Bonnet formula'', J. Math. Mech. 18 (1969) pp. 779--786.〕 in a footnote to a 1969 paper focusing
on manifolds of higher dimension. Nigel Hitchin then rediscovered the inequality, and gave a complete characterization 〔N. Hitchin, ''On compact four-dimensional Einstein manifolds'', J. Diff. Geom. 9 (1974) pp. 435--442.〕 of the equality case in 1974; he found that if (M,g) is an Einstein manifold with \chi(M) = \frac|\tau(M)|, then (M,g) must be a flat torus, a Calabi–Yau manifold, or a quotient thereof.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hitchin–Thorpe inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.